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1. INTRODUCTION

The aim of the presentinvestigationis to characterizethe motionof dendritefragments
falling under the influenceof gravity in a uniform liquid medium at low Reynolds number. In

an earlier study, Zakhem, Weidman and de Groh (1992) reported on the settling speed of model

equiaxed dendrite grains released along their axis of symmetry. In this follow-up study

uniaxial model dendrite grains were released off-axis to observe and document their motion at

different orientations. It was hypothesized that the dendrite models might rotate when released
off-axis in which case an attempt would be made to document the ensuing unsteady motion.

This latter event turned out to be in fact true: at the small but finite Reynolds numbers that

existed, each uniaxial dendrite slowly rotated towards its equilibrium orientation while falling

under the influence of gravity.

In addition to completing the original goal, we have made use of a beads-on-a shell Stokes

flow code to numerically determine the drag coefficient for capsules, i.e., uniaxial dendrites

without arms. The drag on horizontally and vertically falling capsules are reported and

compared with measurements.

2. TEST PROCEDURE

The experiments were conducted in the large tank Stokes flow tank shown in Figure 1.

The apparatus is of square cross section measuring 61 cm X 61 cm X 91 cm and contains 90

gallons of Dow Coming silicone oil as the test fluid. Details of the test measurement procedure

are given below.

Initial observations of the motion of uniaxial dendrites released off-axis showed that the

motion was inherently unsteady as a result of the dendrite seeking its minimum drag
orientation. Hence we abandoned the laser system system sketched in Figure 1, which is

suitable only for steady flow, and replaced it with a photographic data acquisition system. A

Nikon camera placed approximately twelve feet horizontally away from the center section of

the test facility was devised to fire electronically at arbitrary periods in the range 2-150

sec/frame. Position measurements were taken from a ruled sheet taped to the back wall of the

facility. Parallax effects were removed by photographing a second grid placed in the mid-

plane of the apparatus filled with the test fluid. Figures 2a,b exhibit the raw data for the mid-

plane calibration while Figures 2c,d give the raw data for calibration of the back wall grid.
This data is then used to arrive at the parallax correction equations

Ymp = 2.54 [1.11589 (0.5 Ybw) + 0.04766] (2.1)

Xmp = 2.54 [1.07755 (0.5 Xbw) 7 0.00634] (2.2)

which gives the mid-plane coordinates Xmp and Ymp in terms of the fixed grid back wall

coordinates Xbw and Ybw with a conversion factor to convert to centimeters.

Another important modification of the test facility was the design and construction of a

spring actuated release mechanism that could initially orient the dendrites at arbitrary angles 0
relative to the vertical as defined in Figure 4. Dendrites with appendages, such as models U2

and U3 shown in Figure 4, were always released with the stalk and two or more arms in the

mid-plane and the remaining arms perpendicular to the mid-plane. The expectation was that
the dendrites would slowly rotate in 0 towards its final equilibrium position. It turns out,
however, that the dendrites also rotated about their central axis. This defines a second angle

as sketched in Figure 4.



The density and viscosityof the siliconeoil test fluid were accurratelymeasuredas a
function of temperaturefollowing the procedureoutlined in Lasso and Weidman (1986). The
results are

p = 1.0123 - 0.0015176 T (g/cm 3, with T in °C) (2.3)

u = 7895.15 - 199.19 T + 2.8899"1 `2 (mm2/sec, with T in °C) (2.4)

Uniaxial dendrites like those sketched in Figure 4 were tested. The labeling sequence for

the models is U0, UI, U2 and U3 where the number denotes the number of planes of four arm

appendages. Note that the UI dendrite is not shown in Figure 4. In adition we distinguish
between small and big, light and heavy geometrically similar models with letters S and B, L

and H, respectively. The suffixes A and B attached to U0 through U3 pertain to different

primary rod aspect ratios _/a. The dendrite U0 without appendages will be referred to as a

capsule. Although twenty uniaxial dendrite models were constructed for the along-axis tests

reported in Zakhem, et al. (1992), some were broken in the interim and only sixteen survived

in tact. The physical dimensions of each uniaxial model used in the present experiments are

given in Table I.

3. RESULTS

The measurements presented here will be divided into to parts: capsules and dendrites

with arms. In the preceeding study by Zakhem, et al. (1992) all dendrites were released along a

central axis and in the case of uniaxial dendrites the arms were facing down. When the

dendrites were released with out significant disturbance, they were observed to fall without

significant tilting off the central axis of the tank. Those measurements thus constitute steady

flow drag results for the orientation 0 = rt and it appeared that this was the equilibrium

position of dendrites with arms. In the present investigation two other steady flow orientations

are observed. For a capsule carefully released at 0 = _r/2 the capsule remained horizontal and

the flow was basically steady. However, this orientation is one of neutral equilibrium since

the drag is larger for horizontally falling capsules than for vertically falling capsules. Releasing

the capsule slightly off horizontal causes them to rotate gently towards its minimum drag
position at 0--0 or _r. These results will be discussed in §3.1. The second steady flow

orientation is 0 = 0 for dendrites with arms; all U1, U2 and U3 dendrites released horizontally

at 0 = rt/2 immediately rotated towards their equilibrium positions at 0 = 0 with dendrite arms

up. Results for the motion of dendrites with arms will be given in _3.2.

3.1 Capsules

Capsules released horizontally and vertically moved steadily down the axis of the tank

with out appreciable rotation. The ad hoc correction procedure to back out blockage and

inertial effects developed by Lasso and Weidman (1986) and used successfully by Zakhem, et

al. (1992) and Roger and Weidman (1998) cannot be used for horizontally-oriented dendrites.

This is because the dendrite is no longer axisymmetric with respect to the tank centerline and

the results of Wakiya (1957) cannot be used to obtain the wall correction factor K w . However,
a reasonable estimate of the dimensionless horizontal capsule drag D/#RU, where R = a/2 and

U = U s is the Stokes settling speed, can be obtained using the vertical capsule drag results of
Zakhem, et al. (1992). Assuming that the Sutterby correction factor K for both horizontally and

vertically falling capsules as a function of _/a are of the same order, ranging from 3-6% of the

total drag for all capsules except UOABH. Since U s = KU m where U m is the in situ measured

descent velocity, the ratios (Us)v/(Us) h and (Um)v/(Urn)h will be almost equal. Then the
horizontal drag coefficient will be given by



{D1  Um'v{D]_---R-Oh = (Um)h _--R-Uv (3.1)

where (D/#RU) v is taken from Zakhem, et al. (1992). We have measured both horizontally and
vertically falling descent rates and the calculations are summarized in Table II.

Theoretical values of the dimensionless drag ratios for vertically and horizontally falling
capsules have been calculated as a function of _]a using the beads-on-a-shell numerical method

used extensively by Roger and collaborators (Roger and Hussey 1982, Ui, et al. 1984). Basically,
the object is covered by an array of contiguous Stokeslets in the form of small diameter beads

and the hydrodynamic interaction between all pairs of beads are calculated. If d is the bead

diameter, then the drag is obtained by extrapolation to zero d/a. The method is concisely
reviewed by Roger and Weidman (1998).

An example of the coverage of a capsule by small Stokeslet beads is given in Figure 5 for
l]a = 4.30. A coarse covering at d/a = 0.08 and a fine covering at d/a = 0.04 are exhibited. A

test of the extrapolation to zero bead size is shown in Figure 6(a) for drag on a sphere; here

NR is the number of rings of beads surrounding the sphere. The extrapolation from

d/a = 0.018 to zero bead size indeed accurately gives the sphere drag 6n#UR where-R = a/2 is

the radius of the sphere. An example of a calculation for a vertically falling capsule is given

in Figure 6(b). Here it is evident that one must go to much smaller values of d/a in order to

obtain a good extrapolation to zero bead size. Extensive calculations gives the summary data

for horizontally and vertically falling spheres shown in Figure 7(a). The difference in drag

between horizontally and vertically falling spheres increases montonically with the capsule

aspect ratio l]a and the two drags merge at ffa = 1 since that point corresponds to a sphere in

both cases. A good fit to the numerically computed data points over the range 1 _< /a _< 8 is

given by

[_U]v =8.70126+ I0.9262 [_]-0.900089

{_R-_]h =8.53559+ 10-9518 [_] -0.760142

2 3

+003903 61  32,
2 3

0040706,I 1(3.3)

The experimental results listed in Table II are compared with the theoretically determined

drag curves in Figure 7(b). The values for vertically falling capsules are the original UOASL,
UOBSL and UOBSL results of Zakhem, et al. chosen because they have the least inertial and

wall corrections. The values for horizontally falling capsules are an average of the present

measurements of UOASL and UOASH at _]a = 3.50, of UOABL and UOABH at _/a = 3.71, and

include the single result for UOBBH at _]a = 8.00. The measurements are in good agreement

with the theoretical calculations considering that the blockage and inertial effects on the

horizontally falling capsules have only been estimated.

It should be borne in mind that the horizontally falling capsules are only neutrally stable.

Capsules released slightly off horizontal were observed to rotate away towards vertical. The
time variation of this rotation for capsules UOASL and UOBSH are shown in Figure 8. Given

in the insets are the in situ Reynolds numbers

Par Um (3.4)
(Re)a r - #

in which a r is the radius of a sphere formed by the volume of the dendrite model. Note in



Figure 8(a) that the UOASL dendrite released at approximately 0o = 81° rotates only 2.5 ° during
its descent, but it is definitely rotating towards its minimum drag orientation at 0 = 0 o. The
UOBSH dendrite in Figure 8(b) released much nearer neutral stability at 00 = 85° rotates a full
10° during its descent towards the vertical equilibrium position. The faster rotation of the
latter dendrite is due to its increased inertia and increased aspect ratio which provides a higher
rotational torque once off neutral equilibrium: the Reynolds number of the UOBSH dendrite is
about five times and the aspect ratio is about double that of the UOASL dendrite.

3.2 Dendrites

All dendrites rotated away from their initial position when released horizontally, however
none reached the vertical equilibrium orientation in the limited height of the test facility.
Consequently, ach dendrite was released at different initial angles 00 in an attempt to observe
the entire rotation process from 0o near n/2 to the vertical equilibrium position with arms
upward. Separate rotation curves were matched in a systematic manner to produce a
composite plot of 0 versus time. The results for UI dendrites are given in Figure 9, for U2
dendrites in Figure I0, and for U3 dendrites in Figure I1. Here different symbols denote
different experimental runs. While most curves matched well to form the composit curve,
some did not. Close scrutiny of the photographs revealed that the reason for the mismatch of
some curves was due to the fact that some dendrites rotated about their central axis,
corresponding to the angle _bsketched in Figure 4. In several instances the dendrites rotated a
full 45 ° to a position of new reflective symmetry about the mid-plane. This evidently
represents a least-drag configuration compared to the release orientation with two arms in the
mid-plane and two arms perpendicular to the mid-plane, also a position of reflective symmetry.

The basic feature to note is that the dendrites exhibit their maximum rotation rate near

0 = rr/2, almost without exception. To see this, one must look at the local slopes defined by the
plotted data points and not at the polynomial curve fitting the composite data set. That the
maximum rotation rate is at n/2 is reasonable since the dendrite arms are fartherest from the
dendrite centroid and hence cause the greatest torque at finite Reynolds numbers. Of course at
zero Reynolds number the dendrites would not rotate because of the absence of inertial effects.
A characterization of the rotational motion can be obtained by plotting the rotation rate of each

dendrite at 0--n/2 against (Re)a r according to equation (3.4). Although these data listed in

Table III did show some systematic behavior, the results did not collapse well. Since a r does
not measure the fractal-like nature of the dendrites, it was thought that a Reynolds number

based on the shape length scale L s = 3V/A, where V is the dendrite volume and A is its
surface area, might provide a better correlation. Thus in Figure 12 we have plotted O(n/2)

versus (Re)Ls, where

pLs Um (3.5)
(Re)L s - #

The average aspect ratio of the stalks is _/a = 4.10; both UI and U2 dendrites have _/a = 3.80
while the U3 dendrites have _/a = 4.40. The limited number of data points in this log-linear

plot suggest a rather sharp transition from slowly rotating dendrites at (Re)L s < 0.005 to more

rapidly rotating dendrites at (Re)Ls > 0.005. The different behaviors between U2 and U3

dendrites at large (Re)Ls is evidently due primarily to the different distribution of the dendrite

arms about the centroid which causes different torques. There may also be a small influence

of the different aspect ratios of the two dendrites.



4 SUMMARY AND CONCLUSION

The primary findings of this investigation are:

1) Capsules have two equilibria; horizontally falling capsules are neutrally stable and

vertically falling capsules are absolutely stable.

2) Dendrites have two equilibira; vertically falling dendrites with arms downward are

neutrally stable and vertically falling dendrites with arms upward are absolutely stable.

3) Drag versus aspect ratio curves for horizontally and vertically falling capsules have been

computed by the BoS method. These results are in reasonable agreement with experimental

measurements at the three aspect ratios where data are available.

4) Dendrites released horizontally rotate towards equilibrium with maximum rotation rates

observed near 0 = n/2. A plot of these rates versus the Reynolds number based on the shape

length scale L s reveals a sharp transition between slow and fast dendrite rotation rates near

(Re)Ls = 0.005.

5) Dendrites released with stalk and two opposing sets of arms coincident with-a vertical

plane that includes gravity, rotate in _b about the stalk axis while rotating in 0 about their

centroids. The equilibrium position in ¢ is the one for which all dendrite arms are oriented at

the angle _b = n/4 with respect to the mid-plane.

The results found in this study can be used to estimate the orientation of dendrite

fragments when they freeze in a solidifying melt. The descent rates of the dendrites do not

vary much with orientation, and so the earlier results of Zakhem, et al. (1992) can be used to

estimate the settling speeds of arbitrarily oriented dendrites. The rotation rates of the

dendrites, however, are a 3trong function of Reynolds number, even at near Stokes flow
conditions.
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Model 1 a a' b b' b" c c' c"

UOA S 2.223 0.635 .......
UOA B 4.709 1.270 .......

UOB S 2.540 0.318 .......
UOB B 5.080 0.635 .......

UI S 2.413 0.635 0.114 1.905 -- -- 0.762 -- --
UI B 4.826 1.270 0.241 3.810 -- -- 1.524 -- --

U2 S 2.413 0.635 0.114 1.905 1.466 -- 0.762 1. 143 --
U2 B 4.826 t.270 0.241 3.810 2.934 -- 1.524 2.286 --

U3 S 2.794 0.635 0.114 2.032 1.905 1.466 0.762 1.143 1_524
U3 B 5.588 1.270 0.241 4.064 3.810 2.934 1.524 2.286 3.048

Table I. Physical dimensions of the I0 groups of model dendrites.

(All dimensions are in units of centimeters.)

i

Model (Urn) h (Urn) v (Um)v/(Urn) h (D/#RU) v (D/#RU) h

UOASL 0.1002 0.1187 1.185 36.89 43.71

UOASH 0.6110 0.7209 1.179 34.26 40.41

UOABS 0.3859 0.4509 1. 168 36.36 42.47

UOABH 2.321 2.756 1.187 35.10 41.66

UOBSL - - 52.85

UOBSH - 53.37 .-

UOBBL - 55.26

UOBBH 0.8S35 I. 1220 1.3624 53.26 72.55

Table II. Measured capsule descent rates and calculated dimensionless drags.

(All velocities in units of cm/sec.)



Model

UOASL
UOBSH

U1SL
UIBL

U2SH
U2BL
U2BH

U3SH
U3BL
U3BH

I I

T O m ar (Re)ar _/a 0(7r/2) a r/L s (Re)L s

23.6 0.1061 0.534 0.001252 8.00
24.5 0.0324 0.358 0.000261 3.50

25.8 0.0992 0.575 0.001313 3.80 0.125 1.569 0.000834
25.3 0.3293 1.155 0.008674 3.80 0.333 1.569 0.00553

24.0 0.669 0.590 0.00879 3.80 0.742 1.734 0.00506
23.9 0.339 1.188 0.00894 3.80 0.133 1.734 0.00515
24.5 2.391 1.188 0.0638 3.80 1.368 1.734 0.0368

24.0 0.721 0.638 0.01023 4.40 0.642 1.995 0.00513
24.3 0.359 1.288 0.01036 4.40 0.173 1.995 0.00519
24.2 2.642 1.288 0.0760 4.40 1.242 1.995 0.03811

Table III. Measured capsule descent rates and calculated dimensionless drags.
(Temperatures in °C, velocities in cm/sec, and lengths in centimeters.)
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Figure 5. Model capsule constructed for two different bead sizes.
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